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Abstract 
Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth 
scientists and ecologists because of stochastic models and new sensors that provide 
numerous realizations or data points per unit area. One source of these data is from multi-
return airborne lidar, a type of laser that records multiple returns for each pulse of light 
sent towards the ground. Data from multi-return lidar is a vital tool for understanding the 
structure of forest canopies over large extents. This paper suggests visualization tools to 
allow scientists to rapidly explore, interpret and discover characteristic distributions within 
the entire spatial field. The major contribution of this work is a paradigm shift that allows 
ecologists to think of and analyze their data in terms of full distributions, including their 
modality and shape, not just summary statistics.  The tools allow the scientists to depart 
from traditional parametric statistical analyses and to associate multimodal distribution 
characteristics to forest structures. Examples are given using data from southeast Alaska. 

I. INTRODUCTION 
The development of remote sensing has created the routine need for analyzing large 
quantities of multidimensional and multivariate data.  The dimensions are spatial, spectral 
and sometimes temporal. Spectral data has also been considered multivariate, where each 
waveband represents a variable and coincident data on variables measured by some other 
means may also need to be concomitantaly analyzed. In this paper we address a different 
aspect of some remote sensing data sets, their multi-valued nature. That is, we suggest that 
there are many situations where there exist multiple values of a single variable for each grid 
cell or spatial unit. Complete information on these multiple values is contained in the 
probability density function (pdf) of the variable at each location. These data sets are 
common products from remotely sensed images data and also from geophysical simulation. 
They are difficult to visualize because there are at least four axes of information.  

Lidar (Light Detection And Ranging) is a remote sensing technology that yields 
multivalued datasets. When lidar sensors are used to measure vegetated surfaces such as 
forests, they can yield a detailed understanding of the canopy structure across an entire 
study area rather than at a few select plots. Distribution data from raw multi-return lidar 
data from forests provides information on forest structure, tree size and density [3]. Forest 
plots recovering from natural disturbance tend to have unimodal distributions of stem sizes 
and canopy heights with low standard deviations, whereas older, less disturbed forest plots 
tend to have multimodal distributions [6].  

Previous work with lidar data has relied on statistical summaries that attempt to 
characterize each distribution with a small set of descriptors. The summaries reduce the 
dimensionality of the dataset and make visualization straightforward. This approach fails 
when the distributions are nonparametric or, especially, multimodal. We can expect many 
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distributions from lidar data to be multimodal when there exist distinct understorey and 
overstorey tiers or other recognizable vertical strata. 

In this paper, we propose an approach to visualizing lidar data that allows exploration, 
query and comparison of distributions. The approach should increase opportunities to query 
multivalued data in new ways in order to better understand the distributions of geophysical 
and ecological phenomena, both at single locations and across the spatial domain. 
Interpretation can be gained from field reconnaissance, expert knowledge or ancillary 
information. 

II. BACKGROUND 
The challenge to visualizing spatially explicit, multimodal distributions is the four 
dimensional nature of the problem. To consider probability density functions (pdfs) over 
space, two dimensions are the orthogonal spatial dimensions, a third is the variable scale (in 
this case the height scale given by lidar) and the fourth is the frequency scale. Previously, 
we have reported on techniques for visualizing 4D spatial distribution data sets [4] using 
parametric statistics. That is, the pdf at every cell is characterized by a few statistical 
parameters such as mean, standard deviation, skewness, etc. and visualized. When some of 
the pdfs have multimodal distributions, statistical summaries are not sufficient. To address 
this, we have also used shape-based descriptors [5]. The basic idea here is to describe the 
shape of a distribution using the number of modes, the location of the modes, the width and 
height of each mode, etc. This descriptive information is then mapped to visual parameters. 
We demonstrate how that approach can be used with lidar data in Section V. 

Previous efforts to visualize lidar data [2] presented ways in which a user can navigate 
through forest lidar data sets within a virtual environment. This is essentially the creation of 
a digital elevation model of the canopy top. Unlike this approach, our approach looks at 
aggregated multiple lidar returns. Therefore the data at each cell location is actually a 
collection of height values. In this study, we visualized distributions from 0.1 hectare cells, 
the size of field plots for which forest stand measures exist. The techniques developed in 
[4,5] are brought to bear upon this problem. 

III. DATA 
Forest canopy height distribution data were collected using a digital airborne topographic 
imaging system (DATIS-2; 3-Di Technology, MD, USA), a small-footprint lidar. The 
sensor is capable of retrieving multiple (up to 5) returns of elevation and intensity for every 
shot as it passes through a forested canopy. Over wooded terrain, the first return measures 
forest canopy height, while the last return measures ground elevation. DATIS-2 was flown 
in a Cessna 206 in May 2001 over High Island (approximately 500 hectares), located in the 
middle of the Alexander Archipelago. The data were initially collected at a density 
exceeding 2 shots per m2. Raw data were processed into 81 measures of maximum forest 
canopy height for each 0.1 hectare cell across the island, resulting in 1800 0.1 grid cells 
with distribution data for each cell.  The island is dominated by productive western 
hemlock (Tsuga heterophylla (Raf.) Sarg.) with scattered Sitka spruce (Picea sitchensis 
(Bong.) Carr.). 

IV. ALGORITHMS 
Prior to visualization, algorithms are applied to the raw data to estimate and characterize 
their distributions. In particular, density estimation is used to generate a probability density 
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function from the 81 heights at each grid cell, a peak hunting algorithm is used to find all 
the modes in the pdfs, and an operator is selected to allow distribution matching.  

A. Density Estimation 
For each grid cell in the field, there are multiple lidar returns, each with an associated 
height. These represent a sample of the full set of heights of all elements in the canopy. We 
use each sample to make an estimate of the "true" density, that is, the distribution of the full 
set of heights. One common density estimator, the histogram, does not produce a 
mathematically valid pdf and is very sensitive to the bin width used. There are many other 
estimators possible depending on the nature of the data [8]. In this application with lidar 
data, we selected a kernel estimator because it provides robust density estimation and is 
widely used.  

B. Mode Finding 
Given a distribution, there are a number of ways to characterize its modality, or how bumpy 
it is. For example, one may treat the distribution as a signal and apply Fourier analysis to 
extract the major frequency with the largest amplitude. However, one is still faced with the 
task of deciding what is a significant mode in frequency space. Alternatively, one may use 
Gaussian mixture models to fit the data as a weighted combination of Gaussian 
distributions. However, this approach requires significant a priori knowledge about the 
modality of the distribution in the first place. Instead, we use a descriptive approach that 
analyzes the shape of the distribution. We used the peak-hunting algorithm that we 
proposed in [5] to determine the number of peaks in each distribution and their respective 
positions. 

C. Distribution Matching 
There are a number of operators that can be applied as distance measures to compare 
distributions. The Kullback-Leibler (KL) distance, derived from information theory [1,7], 
can be used to compare distributions in order to find ones that have shapes that match a 
distribution of interest.  The greater the KL distance, the less similar two distributions are. 
We set a threshold to control how similar we want the search results to be to a distribution 
of interest or target distribution. All the distributions with a distance less than the threshold 
to the target distribution will be accepted as similar distributions to the target distribution.  

V. VISUALIZATION TOOLS 
In the following subsections, we describe techniques designed to provide capabilities 
ranging from synoptic, general views of the full data set to more specific, localized and 
detailed query and display. The techniques allow extensions well beyond summary 
descriptors such as the quadratic mean, robust mean and chi-square or other “non-
parametric" summaries or clustering algorithms. For each technique, we describe how it 
can assist the scientist in exploring distributions. We apply these tools to distributions of 
canopy height derived from the lidar data, focusing on several characteristic distributions 
that are of particular interest to the scientist. Collectively, these tools can be used 
effectively to analyze distribution data.  
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Figure 1: The spatial locations of unimodal and 
complex multimodal distributions in the High Island 
lidar data. 
 

Figure 2: The kernel density estimate and the histogram 
at the probe position shown on the right image plane of 
the figure. 

A. Displaying the modality of the distribution data 
The first look at the spatially explicit distribution data shows the number of modes for each 
cell, calculated using the peak hunting algorithm described in [5] (Figure 1). This synoptic 
descriptor of all the data across the sample space provides the scientist with the first 
glimpse of new information related to the distribution. The modality of each cell gives 
some indication of patterns of multimodality. This is the first new information about the 
distribution that is not available through coarse statistical descriptors. This display helps 
answer questions such as what proportion of the data is unimodal or multimodal? Are the 
number of modes spatially clustered or concentrated in any one subregion of the field? 

B. Interactive Data Probe 
We have implemented an interactive data probe that allows the user to view the distribution 
of an individual cell at the current probe position set by the user. The interactive data probe 
is straightforward and useful for visualizing the pdf at any location in the field. It provides a 
per point basis query and shows the modality of the distribution. Only one density estimate 
is displayed at a given time (Figure 2). To begin gaining familiarity with the data the 
scientist can probe the forest data at different locations in order to have a good overall feel 
for the distributions in the study area. In addition, when viewing the distribution of a given 
cell, adjacent cells can be selected (through an up, down, left and right keyboard feature), 
thus allowing the scientist to visually traverse portions of the forest. This feature allows the 
scientist to view and relate distributions of particular forest regions of interest that s/he 
might already be familiar with through field reconnaissance or other ancillary data. 

C. Mode Exploration 
The modes of a distribution can be explored in a variety of ways using mode exploration 
tools. For all of these tools, the mode is computed using the peak hunting algorithm 
described in [5]. Meaningful mode exploration depends on using the proper density 
estimator, so that shapes in the distribution are real and not an artifact of low sampling 
density in the data. Conversely, it is important that all real information in the distribution be 
retained, so the smoothing function must minimize the loss of real information contained in 
the distribution. Our mode exploration tools comprised of: (1) mode query, (2) visualizing 
the distributions from the results of a mode query, and (3) visualizing the distributions and 
the spatial locations from the results of a mode query. Each of these processes is described 
in more detail in the following sections.  
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Figure 3: The image plane shows the mean canopy 
height for each cell in the field colored by six classes. 
Cells marked by black squares denote those locations 
found by the query: (1) mode between the heights of 
117 and 194 feet, and (2)  frequency above 0.05.  The 
left graph shows the distributions of those pdfs 
matching the query. 

Figure 4: Same query results as shown in Figure 3 
except that the pdfs are plotted directly above the grid 
cells. These pdf curves provide another visual cue of 
the distributions found by a mode query. 
 

 

1) Mode query: These are queries that show the abundance, the spatial location,  the spatial 
extent and the spatial pattern of distributions with a specific mode. For example, after using 
the interactive data probe and relating the distributions observed with field observations, 
the scientist became interested in finding all unimodal distributions with a mode between 
117 and 194 feet. The mode query tool allows for visual identification of all those 
distributions that match this query (Figure 3).  These locations are grid cells denoted with 
black squares. It is not surprising that the mean field of the distribution data at these grid 
cells are relatively high as indicated (in the red and magenta color range in Figure 3).  

 2) Visualizing the distributions from a mode query: From a mode query, there may be tens 
or hundreds of grid cells that match a specified mode criterion. The visualization challenge 
here is how to display all of these density estimates effectively, so that the scientists can 
begin to explore the shapes and diversity of the distributions identified through the query. 
Furthermore, these similarities and differences need to be highlighted for analysis e.g. for 
those pdfs that are very different, the information about which grid cells these pdfs 
represent should be shown/highlighted. Similarly, the grid cells of those conforming pdfs 
(pdfs that are similar) should be clustered or colored in the same group. 

The most common approach to view several pdfs is to simply plot them side by side for 
visual comparison. This can be done by plotting a set of pdfs, or as many pdfs that can 
possibly fit on the screen in multiple windows. If the query only found a few pdfs, then this 
method is ideal and effective for comparing these pdfs. However, if there were tens or 
hundreds of pdfs found by the query, the user would need to view so many graphs as to 
make this method impractical.  

Another simple approach is to plot all of the pdfs in one single graph, giving the scientist a 
visual comparison of these pdfs. This method is only useful, however, if the scientist is 
interested in determining whether there are any pdfs that differ significantly from others. 
The scientist would be able to see the overall shapes of these pdfs using this approach. 
However, for more detailed comparisons of pdfs, this method would not be suitable since it 
is most likely that many pdfs would overlap in the graph which makes it difficult to 
distinguish the details. In Figure 3, a graph of the distributions of those pdfs matched a 
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mode query is shown to the left. By displaying all of these pdfs in the same graph, the 
overall shape of these distributions can be seen to be very close.  

Visualizing the distributions identified through a mode query not only allows the scientist 
to inspect them, it also allows the scientist to look for the following features: (1) outliers 
(how are outliers shaped, how many modes do they have, etc.), (2) trends (how are most of 
the distributions shaped, how many modes do they have), (3) diversity (how different are 
they from one another), (4) homogeneity (how similar), and (5) modality.  

3) Visualizing the distributions and their spatial locations from a mode query: At this point, 
a scientist using the mode query tool has an idea of the locations and a graph of all the 
distributions that match the query. One source of information that is missing from the 
previous approach, shown in Figure 3, is that we do not know which grid cell the pdfs 
correspond to. In Figure 4, the same pdfs from Figure 3 are plotted right above their grid 
cells. We found this technique to be effective also for revealing the pdfs found by the 
query. By plotting the pdfs right above the corresponding grid cells, we can easily see the 
spatial locations of the matching pdfs. Note that the pdfs are drawn such that the density 
estimates are plotted along the axis perpendicular to the image plane. We construct a pdf 
curve for each grid cell found by the mode query. A pdf curve is created by horizontally 
displacing points along a vertical line by the magnitude of the density estimate. The height 
of the pdf curve is determined by the number of evaluation points of the density estimate. 
In our example, 150 evaluation points are used. The color of each pdf curve presents the 
mean tree height of the distribution data at the corresponding grid cell.  

D. Distribution Exploration 
Distribution exploration is performed by distribution matching and visualizing similar 
distribution shapes. This allows scientist to identify all distributions that are similar in their 
entirety rather than in just a mode. Our tool allows the user to be more restrictive or more 
relaxed in the specificity of finding “like” distributions and allows all distributions to be 
ranked in terms of their similarity to the specified pattern. For example, matching could be 
restricted to certain data range, or only when the frequency is above a certain threshold. 
Likewise, matching could be relaxed by lowering acceptance threshold or using more 
liberal similarity metrics. Since density estimates vary in their quality, the ability to relax or 
restrict the definitions of similarity with the query tool allows user flexibility in identifying 
a range of like distributions and their spatial locations. Through using the interactive data 
probe, the scientist is able to “visit” portions of the forest he was already familiar with 
(through field reconnaissance). Using the distribution matching tool, all distributions that 
are similar in their entirety to a specific distribution of interest were identified using 
contour lines as illustrated in Figure 5. Identifying similar or matching distributions can be 
a powerful way to perform hypothesis testing, guide additional field work, and generate 
new data products of interest. 

Once the contours lines are generated from the results of the distribution matching tool, an 
additional visualization tool provides yet another way of studying subtle differences in the 
matching distributions. This tool constructs color-mapped characteristic distribution 
surfaces to depict the variations of the pdfs along the contour lines. For each grid cell along 
a contour line, a vertical line is plotted right above the corresponding grid cell. Then, a 
surface mesh is formed by connecting vertical lines from the adjacent points along the 
contour line. The surface mesh is colored by the density estimates. Since there are usually 
several contour lines, our tool would generate several disjoint characteristic distribution 
surfaces. As with the pdf curves shown in Figure 4, the height of the surfaces is determined 
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by the number of evaluation points of the density estimate. Figure 6 shows the 
characteristic distribution surfaces of the matching distributions. As with the visualization 
tools provided in the modality exploration, this visualization tool provides even further 
refinement of relative homogeneity, heterogeneity and associated possible spatial patterning 
of the characteristic distributions.  

 
 
Figure 5: Using the distribution matching tool, the 
scientist found all distributions that are similar to one 
(graph shown on the right) found to be recovering from 
a recent disturbance event. 
 

Figure 6:  Characteristic distribution surfaces for the 
contours lines shown in Figure 5. The surfaces are 
colored by the density estimates. The pdfs along the 
contours are mostly unimodal as indicated by the 
central magenta color band that runs across the middle. 

 

VI. DISCUSSION 
The utility of each of the technique discussed in this paper fundamentally depends on the 
selection of an appropriate density estimator. The estimator determines how the data are 
smoothed and how modes are defined. Each estimator is different, and may be well-suited 
for one type of data but not another. The kernel estimator used in this application with lidar 
data, for example, may have smoothed possibly interesting features in the data. The 
appropriateness of a given estimator depends partly on the number of raw data values per 
grid cell. In general, the larger the number of raw values, the more robust a given esimator 
will be. The precision of the data can also affect the size of the kernel used and the 
consequent smoothing of the distribution.  

A key feature of these tools is their flexibility. Software that gives the scientist a choice of 
estimator and the ability to specify the parameters used in estimation will allow the 
accomodation of diverse data sets and exploratory data analysis. The kernel estimator we 
used in this study was selected because it is a robust, widely-used estimation technique but 
many other choices are possible.  

Once an estimator is selected, the identification of modes is also not completely 
deterministic. Small bumps may be of little or no interest to the scientist, so what 
constitutes a mode in the display and query of modality can be user defined. Matching 
entire distributions is also a user-defined process. Success depends on increasing or 
decreasing the specificity of the distribution matching algorithm and having some 
meaningful criteria for doing so. Also, the distribution matching algorithm used is 
important. In this paper we used the KL distance, but others are possible. Ultimately we 
envision a user-selection capability, so that various algorithms can be employed and their 
output assessed.   
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VII. CONCLUDING REMARKS 
Overall, our visualization tools provide new ways to query, visualize and compare 
distributions. The key contributions of this work are (1) automated ways to process forest 
canopy distributions derived from lidar data and (2) improved interactive access to                       
lidar distributions, allowing the scientist to form and test hypotheses about                       
horizontal and vertical structure in forests. 

Though the application described in this paper deals specifically with multi-return lidar 
data, our tools can be easily be used with distribution data sets from other applications. 
There are several open research problems in visualizing spatially varying distribution data 
sets, including the extension to distribution data that are sampled in a 3D domain and the 
extension to distribution data on more than one variable at a time.  
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